What’s in a recall anyway? First, there are several category levels of recalls based on potential injury to consumers. The levels range from a Class I recall, which could mean the food was contaminated with a foodborne pathogen and there is a reasonable likelihood that consuming the food would cause illness, to a Class III recall, which may include a labeling mistake and the food is unlikely to cause an illness.

Most large companies have pre-planned programs for handling details related to recalls. Hopefully, such large recalls will never occur, but it is most prudent to have a well-seasoned plan that quickly can be put in place should one happen. This includes knowing how to identify affected manufactured product lots that are put into commerce; identifying if microbial test samples had been taken off the suspect lots during manufacture; identifying where or to whom product lots had been shipped and how to recall them quickly; dealing with public health officials, public news agencies and public/consumer inquiries; and having a program to accommodate consumers who have become ill due to the contaminated product.

The worst nightmare scenario is for a food company to fight an investigation of its involvement in an outbreak in the public media, claim innocence and then in the end be proven by regulatory agencies and the Centers for Disease Control to have been involved in a large consumer outbreak.

Having a public relations recall system in place before a recall ever happens can save a company’s hide.
A recent U.S. Food and Drug Administration draft of a risk assessment of animal clones involving somatic cell nuclear transfer technology, or SCNT, and their progeny was released recently for public comment. Part of the assessment covers the use of such clones/progeny as sources of human food. The assessment describes how assisted reproductive technologies, or ART, including artificial insemination, have existed for centuries. The assessment suggests SCNT is an advanced form of ART, whereby instead of relying on chance, as with artificial insemination, nuclear transfer allows for a defined propagation of known genotypes and phenotypes.

The document introduces a summary from a Japanese research institute report for the Ministry of Health and Welfare concerning the safety of foods made from cloned cattle and states “there is no scientific basis for fearing the safety of such foods.” The document also recommends food from bovine nuclear transfer cloned cattle be sold with labeling identifying its source.

One of the concerns for SCNT is that it may lead to subtle changes in the nutrition provided by beef cattle or other cloned animals and that a dietary risk could result from the absence of nutrients normally obtained from meat or milk. However, evidence demonstrates no obvious differences for characteristics typically examined for foods from cloned versus non-cloned animals. Also, discussions indicated there are no chemical composition requirements for animal meat, and milk is covered by regulatory requirements for milk solids and fat levels.

There have been protests from various commercial factions, such as Ben and Jerry’s, as well as consumer advocacy groups, such as Food & Water Watch. This will certainly be an interesting issue throughout the comment period and until the final rule is issued.